Design Documents

When it comes to assuring your customers that you have a high-quality product, one doesn’t have to look farther than a set of design standards. 

Beginning with the 2015 IBC, truss deflection is reported differently.

The tables are intended as a practical tool to assist contractors in the selection of footing widths and the determination of the quantity of wood studs required for supporting the end reactions of beams, girders, and/or headers. 

Question: 

Some building designers believe that gable end webs need to be L-braced to 90% of the web length, which sounds fine. However, they spec that scissors gable end webs need to be braced to 100% of the web length. That means that in the field they are notching the braces to fit around top and bottom chords – you can imagine how difficult that can be. Is that necessary or even the intent of the web L-bracing?

Question: 

As a forensic engineer who has investigated numerous collapses of wood truss systems, I find your web site an excellent resource on the proper erection of wood trusses. What are your opinions on steel trusses, particularly with regards to installation and bracing? Do you feel that the installation and bracing techniques utilized for wood trusses are applicable to steel trusses? Do you know if that is the general industry standard or are there specific requirements and guidelines for steel trusses? Is there a particular guideline/commentary available for metal trusses?

Question: 

Can I safely install 3/4 in. T&G, OSB on 2x4 trusses that are 24 in. O.C.? My roof was installed over 5/8 in. plywood without clips that have caused a lot of sagging and the shingles need replacing. I want to “fix” it one time and install architecture type shingles, but the garage is 24 ft. wide and 28 ft. long without any load bearing walls. My concern is the weight on the trusses. 5/8 in. plywood weighs 52 lbs. and the OSB weighs 78 lbs. for each 4 ft. x 8 ft. sheet. The roof will require about 84 4 ft. x 8 ft. sheets to cover, which equals about 2,184 lbs.

Question: 

We are planning to add 1/2 in. cement board and 3/8 in. quarry tile to a kitchen floor. We need to know if the floor trusses will handle the additional weight. The floor trusses are 19.2 in. O.C. and the loading numbers are 40-10-0-5. What do these numbers mean?

Question: 

How important is continuous lateral bracing in roof trusses? Is it detrimental to the roof integrity if it is missing?

Question: 

I am thinking of using wood trusses for the roofing/ceiling structural systems on some houses I shall build. I remember, though, an engineer/volunteer fireman commenting back in 1989 that the connector plates are prone to expand and pop off, early on in a fire, causing catastrophic structural failure. Was this the case, and if so, has this problem been corrected?

Question: 

As an engineer, I have noticed truss designers in some high wind states routinely using “Main Wind-Force Resisting Systems” wind pressure coefficients as opposed to “Components and Cladding” coefficients to design for wind uplift. A roof truss is not a main wind-force resisting system and would have to have a tributary area of more than 1000 sq. ft. before qualifying for the lower Primary Frame coefficients. In my experience this practice is routine.